SPACEL.Scube.gpr.GPRmodel
- class SPACEL.Scube.gpr.GPRmodel(expr, loc, loc_resample, used_genes, use_gpu=False, output_dir=None, **kwargs)
The GPR model class.
The GPR model class for prediction of 3D spatial transcriptomic data.
- used_genes
A list of gene names used for selecting genes as input.
- log_bf
The log Bayes factor (BF) value indicating the variation of each gene in 3D spatial data.
- use_gpu
A boolean value indicating whether to use the GPU for training.
- subset
An integer value indicating the number of spots/cells to be downsampled for training.
- lengthscale_prior
The prior value of the lengthscale parameter in the Gaussian Process Regression (GPR) model.
- outputscale_prior
The prior value of the outputscale parameter in the GPR model.
- noise_prior
The prior value of the noise parameter in the GPR model.
- output_dir
The path where the outputs will be saved.
- __init__(expr, loc, loc_resample, used_genes, use_gpu=False, output_dir=None, **kwargs)
Initializes the instance of GPR model class.
- Parameters:
expr – A matrix of expression values at each location in the spatial transcriptomic data.
loc – A matrix of coordinate values at each location in the spatial transcriptomic data.
loc_resample – A matrix of coordinate values at each location in the resampled data.
used_genes – A list of gene names used for selecting genes as input.
use_gpu – A boolean value indicating whether to use the GPU for training.
output_dir – The path where the outputs will be saved.
Methods
__init__
(expr, loc, loc_resample, used_genes)Initializes the instance of GPR model class.
eval_model
()init_model
(model[, noise, lengthscale, ...])load_gene_model
(gene, training_iter, lr)optim_lengthscale
(model[, lr, l_range, ...])plot_gpr_expr
(gene, training_iter, lr[, ...])Plotting predicted expression values.
predict_resampled_spot
([gene, data, ...])prepare_gpr_data
(X, y, subset)prepare_gpr_model
([lengthscale_prior, ...])train
([lr, training_iter, save_model, ...])Training GPR model
train_single_model
(model[, lr, ...])